当前位置:6374刘伯温开奖结果 > 人工智能语言 >

充分利用人工智能推进老年语言学研究

  实现疾病的智能检测与干预是智慧医疗的核心内容之一。针对DAT等脑神经退行性疾病而言,人工智能技术至少还可在以下几个方面提供协助。

  一是将现有的纸质认知能力检测方式自动化。对受试者检测过程中的多维数据进行采集,例如时间的起始与停顿、声音、表情、身姿、手部轨迹等;还可基于自然语言处理技术进行简单题分数判定,提高筛选效率。例如,科大讯飞与MIT已开发可记录受试者多维度信息的画钟测验。

  二是开发面向语言认知衰老队列研究的自动电话外呼及数据采集分析系统。该系统可基于自然语言处理技术,对通过电话采访进行的队列研究老年人话语进行初步分析与归类。

  三是基于多模态数据优化现有认知能力检测量表,提升特异性、敏感性语言指标在认知评估中的地位。基于国外现有文献及队列研究中的数据采集,进行语音、语法、语义、语用等多层次的语言特征提取,结合医学诊断,形成标签化的大数据库。在实际评估中,利用计算机数据采集系统,将诱导数据与自然话语结合,以言语表现为突破口,在DAT前期尽早实现阳性发现。

  四是建设基于证据链的神经退行性疾病及老龄化知识库及专家系统。开展基于脑成像的DAT早期预警与诊断方法的研究,包括基于3D卷积神经网络的影像建模与分类方法、单期影像输入的脑疾病诊断方法以及多期影像输入的特征与判决融合方法的研究等;采用循证医学准则,将罹患神经退行性疾病及其他老龄疾病风险值评估作为决策的类别标识,结合脑神经损伤、语言认知衰退及老年疾病智能仿真系统(数字人),整合学科知识、医学影像、生化报告、病例档案、访谈记录等数据,建设本体知识库;在此基础上,不断对神经网络进行深度学习训练,增强其稳定性与鲁棒性,促使其成长为专家系统,协助医生给出可靠的诊断报告与治疗方案。同时,基于人口学数据、队列研究及已有认知量表检测结果,可进行某地区老年人认知功能衰退的计算机模拟预测。

http://antalyaesc.com/rengongzhinenyuyan/228.html
点击次数:??更新时间2019-06-11??【打印此页】??【关闭
  • Copyright © 2002-2017 DEDECMS. 织梦科技 版权所有  
  • 点击这里给我发消息
在线交流 
客服咨询
【我们的专业】
【效果的保证】
【百度百科】
【因为有我】
【所以精彩】